Affinity vs. Cooperativity

UC Santa Barbara researchers in chemist Kevin Plaxco’s lab are deeply interested in the mechanics of biomolecular receptors, which have great potential biotechnology applications, including the design of biosensors. In a paper in the Proceedings of the National Academy of Sciences, the researchers develop a modular design approach for tuning two important and typically opposing aspects of biomolecular receptor binding: affinity and cooperativity.

November 4, 2020
Molecules bind to receptors on a cell surface, triggering a signal that produces a response
Molecules bind to receptors on a cell surface, triggering a signal that produces a response

Our biological processes rely on a system of communications — cellular signals — that set off chain reactions in and between target cells to produce a response. The first step in these often complex communications is the moment a molecule binds to a receptor on or in a cell, prompting changes that can trigger further signals that propagate across systems. From food tasting and blood oxygenation during breathing to drug therapy, receptor binding is the fundamental mechanism that unlocks a multitude of biological functions and responses.

UC Santa Barbara researchers in chemist Kevin Plaxco’s lab are deeply interested in the mechanics of biomolecular receptors, which have great potential biotechnology applications, including the design of biosensors. In a paper in the Proceedings of the National Academy of Sciences, the researchers develop a modular design approach for tuning two important and typically opposing aspects of biomolecular receptor binding: affinity and cooperativity.

For full article please see link below.